Metacapacitors™

Next-generation electric power converters

<table>
<thead>
<tr>
<th>What</th>
<th>Why</th>
<th>How</th>
<th>What for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better DC-DC converters</td>
<td>Cheaper</td>
<td>Switched capacitor circuit topologies</td>
<td>LED lighting drivers</td>
</tr>
<tr>
<td></td>
<td>Smaller</td>
<td>Novel high-frequency, low-loss capacitors</td>
<td>PV power conversion</td>
</tr>
<tr>
<td></td>
<td>More efficient</td>
<td>Scalable continuous printed fabrication</td>
<td>Mobile devices</td>
</tr>
<tr>
<td></td>
<td>Longer lasting</td>
<td>No transformers or electrolytics</td>
<td>Power supplies</td>
</tr>
</tbody>
</table>

Our multidisciplinary team combines enabling technology and expertise:

- Self-assembling nanoparticle dielectrics
- Scalable capacitor printing technologies
- Novel device integration
- Analog power circuits and IC design

O’Brien (CUNY)
Steingart (Princeton)
Leland (CUNY)
Kymissis (Columbia)
Sanders (Berkeley)
Kinget (Columbia)
Metacapacitors™
Switched capacitor power conversion: Simplified concept

- A capacitor is a component that stores electricity, like a battery.
- Our circuits repeatedly charge a set of capacitors, reconfigure them electronically, and then discharge them to convert electric voltage and current, millions of times per second.
- No electrolytics or expensive magnetics required for DC-DC conversion.
Metacapacitors™
Switched capacitor advantages over switched mode power supplies

- DC-DC power train is only switches and capacitors, no transformers or inductors
- Smaller switches and capacitors only handle a fraction of the input voltage or total current
- Higher switching frequencies allow for higher power densities, efficiencies of 95% or greater

Vision: A two-component power converter
- Passives printed on cheap flex substrate
- Single power IC for switching, control
Metacapacitors™
Printable nanoparticle dielectric for high frequency capacitors

- High frequency performance with low loss—single crystal nanoparticles exhibit no ferroelectric hysteresis
- Nanoparticle dielectric inks are readily printable and are compatible with spin coat deposition
- Synthesized below 100°C, No HTCC/LTCC required
- BaTiO₃ and (Ba, Sr)TiO₃ nanoparticles, size controllable from 5-100 nm
- No rare earth materials

Metacapacitors™
Printed multilayer capacitors for power conversion

- Purely additive, roll-to-roll compatible spray-coat or gravure deposition
- All processing below 200 °C
Metacapacitors™
Printed multilayer capacitors high-frequency performance

Wide-area spray-printed multilayer capacitor

Mean Capacitance with Increase in Layers

Dissipation Factor of 6-layer Devices

Each line represents the loss characteristics of a single multilayer capacitor
Metacapacitors™

Printed capacitors in high-frequency power circuits

Voltage regulation is comparable to standard MLCCs in an off-the-shelf 1 MHz charge-pump LED driver

All-flex 1 MHz charge pump LED driver
Metacapacitors™
Custom switched-capacitor power IC designs

- Stackable 2:1 DC-DC converter step-down IC
- Implemented in Texas Instruments’ ABCD5HV process, maximum 120 V on-chip
- As shown operating 2 ICs in stacked configuration at 2.2 MHz, 15 W, 4:1 step-down converter (160 V to 40 V)
Metacapacitors™
Next-generation power IC with integrated PFC

- Full off-line LED driver chip currently in progress
- Target specs: 15 W, PFC > 0.99, efficiency at full load > 90%, dimming to 5% with efficiency > 50%, galvanic isolation between input and output
Metacapacitors™

Technology is highly cost-competitive

<table>
<thead>
<tr>
<th>Capacitor type</th>
<th>Energy density per area (μJ/mm²)</th>
<th>Energy density per volume (μJ/mm³)</th>
<th>f_{max} (MHz)</th>
<th>Power density per area (W/mm²)</th>
<th>Power density per volume (W/mm³)</th>
<th>Footprint area, 10 μF @ 50 V (mm²)</th>
<th>Cost, 10 x 1 μF @ 50 V</th>
<th>Operating lifetime</th>
<th>Package form factor</th>
<th>Suitable for 15 W LED driver in 1 cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metacapacitors (projected)</td>
<td>12.5</td>
<td>625</td>
<td>10</td>
<td>125</td>
<td>6260</td>
<td>1000</td>
<td>$0.50</td>
<td>Infinite</td>
<td>PSiP/PwrSOC</td>
<td>Yes</td>
</tr>
<tr>
<td>Deep trench</td>
<td>21.1</td>
<td>469</td>
<td>10</td>
<td>211</td>
<td>4690</td>
<td>154</td>
<td>>$7.00 (lower bound)</td>
<td>Infinite</td>
<td>PwrSOC</td>
<td>Yes</td>
</tr>
<tr>
<td>X7R MLCC</td>
<td>252</td>
<td>126</td>
<td>2</td>
<td>504</td>
<td>252</td>
<td>49.6</td>
<td>$2.00</td>
<td>Infinite</td>
<td>PSiP</td>
<td>Yes</td>
</tr>
<tr>
<td>Metallized polymer film</td>
<td>28.5</td>
<td>6.3</td>
<td>2</td>
<td>57</td>
<td>12.7</td>
<td>438</td>
<td>$6.60</td>
<td>Infinite</td>
<td>Non-integrated</td>
<td>No</td>
</tr>
<tr>
<td>Tantalum electrolytic</td>
<td>65</td>
<td>26</td>
<td>0.03</td>
<td>2</td>
<td>0.8</td>
<td>192</td>
<td>$5.30</td>
<td>50k hours</td>
<td>Non-integrated</td>
<td>No</td>
</tr>
<tr>
<td>Aluminum electrolytic</td>
<td>139</td>
<td>26</td>
<td>0.03</td>
<td>4.2</td>
<td>0.8</td>
<td>90</td>
<td>$0.68</td>
<td>10k-25k hours</td>
<td>Non-integrated</td>
<td>No</td>
</tr>
</tbody>
</table>
The Metacapacitors Team

Prof. Steve O’Brien
Chemistry
CCNY

Prof. Seth Sanders
Electrical engineering
UC Berkeley

Prof. Ioannis (John) Kymissis
Electrical engineering
Columbia University

Prof. Peter Kinget
Electrical engineering
Columbia University

Prof. Dan Steingart
Mechanical engineering
Princeton University

Dr. Eli Leland
Chemical engineering
CCNY

Interested in partnering? Email info@metacapacitors.com